

LYNCHBURG AREA BACTERIA TMDL DEVELOPMENT

Virginia Department of Environmental Quality Virginia's Region 2000 Local Government Council Engineering Concepts, Inc.

PUBLIC MEETING July 17, 2006

LYNCHBURG AREA IMPAIRMENTS

LYNCHBURG AREA IMPAIRMENTS

WATERSHED WITHIN LOCALITIES

	Locality	Watershed	% of	
	Total	Acreage in	County in	
Locality	Acreage	County	Watershed	
Amherst Co.	303,115	46,356	15.3%	
Bedford Co.	489,729	29,400	6.0%	
Campbell Co.	323,729	11,800	3.6%	
Lynchburg City	31,661	31,661	100.0%	

QUESTIONS TO ANSWER

- What is the history of the watershed?
- Who/what is producing bacteria in the watershed?
- How much bacteria is being produced by sources in watershed?
- How is the bacteria reaching the stream?
- What source reductions are needed to meet the water quality standard?

TMDL DEVELOPMENT PROCESS

WATERSHED HISTORY

Characterize watershed and identify critical contamination conditions

• SOURCE ASSESSMENT

Identify and quantify pollutant sources

MODELING

Link pollutant sources to stream water quality

ALLOCATION

Develop and evaluate allocation scenarios

WATERSHED HISTORY

- Characterize watershed
 - Size
 - Land use
 - Slope
 - Soils and geology
 - Stream channel dimension
- Identify critical contamination conditions
 - Timeseries of bacteria concentration
 - Seasonality
 - Bacteria concentration versus flow

WATERSHED CHARACTERISTICS

		Land use						
Impairment	Drainage	Agricultural	Residential/	Forest	Water/			
	Size	(%)	Commercial	(%)	Wetland			
	(sq. mi.)		(%)		(%)			
Ivy Creek	37.4	28.7	7.1	63.4	0.8			
(VAC-H03R-03)								
Burton Creek	10.3	14.2	39.3	46.0	0.5			
(VAC-H03R)								
Tomahawk Creek	8.2	26.9	27.9	44.8	0.4			
(VAC-H03R)								
Blackwater Creek	9.6	6.5	44.7	48.1	0.7			
(VAC-H03R-01)								
Fishing Creek	7.2	7.0	54.7	38.1	0.2			
(VAC-H03R-02)								
Judith Creek	13.1	15.1	5.8	78.5	0.6			
(VAC-H03R)								
James River	100.4	16.4	6.7	74.4	2.4			
(VAC-H03R-04)								

BACTERIA TIMESERIES Fishing Creek (2-FSG000.85)

BACTERIA SEASONALITY Blackwater Creek

BACTERIA SEASONALITY Fishing Creek

BACTERIA SEASONALITY Judith Creek

BACTERIA SEASONALITY James River

BACTERIA VS. FLOW Fishing Creek (2-FSG000.85)

SOURCE ASSESSMENT

Source Category	Source / Animal Type
	Permitted Discharges
	Sanitary Sewer
All Investigation of Data	Straight Pipes
Human and Pets	Failing Septic Systems
	Biosolids Applications
	Dogs / Cats
	Dairy & Beef Cattle
	Horses
Agricultural	Swine
	Chicken
	Turkey
	Deer
	Raccoon
	Muskrats
Wildlife	Beavers
	Turkeys
	Geese
	Ducks

HUMAN SOURCES

- Population, houses, onsite treatment system based on U.S. Census Bureau, municipality, & E-911 data
- Sanitary sewer
 - Loading type
 - Overflows & exfiltration
 - Age, size, material of pipes
 - Land-applied / direct deposition
 - Loading type
 - Proximity to stream

PERMITTED POINT SOURCES

- Virginia Pollution Discharge Elimination System
 - Types
 - Municipal, industrial, general
 - Municipal separate storm sewer systems (MS4)
 - Categories major, minor, general

PERMITTED DISCHARGES

WATER BODY	PERMIT#	FACILITY NAME	FACILITY TYPE	FACILITY CATEGORY	DESIGN FLOW	PERMIT AVE. FLOW	RECEIVING STREAM
VAC-H03R	VA0063657	Amherst Co Service Auth-Ivanhoe Forest Sub	Municipal	Minor	0.0015	0.015	Fawn Creek, UT
VAC-H03R	VA0027618	US Department of Labor-Rescare Incorporated	Municipal	Minor	0.04	0.04	Harris Creek
VAC-H03R	VA0091162	Boonsboro Country Club	Municipal	Minor	0.015	0.015	Judith Creek, UT
VAC-H03R	VA0051888	Lynchburg City Abert Water Filtration Plant	Industrial	Minor	0.265	NL	James River, UT
VAC-H03R	VA0024970	Lynchburg City Sewage Treatment Plant	Municipal	Major	22	22	James River
VAC-H03R	VA0087114	American Electric Power - Reusens Hydro Plar	Industrial	Minor	0.177	NL	James River
VAC-H03R	VA0002925	Griffin Pipe Products Company - Lynchburg	Industrial	Minor	0.04	NL	James River

OTHER PERMITTED LOADS/DISCHARGES

- Municipal separate storm sewer systems (MS4s)
 - City of Lynchburg
 - VDOT Lynchburg
- Combined sewer overflow (CSO)
 - •132 original overflow points reduced to 35
 - •78% reduction in loading to streams
 - •Estimate 30 years to eliminate remaining 35 CSO overflow points
 - •2002 Annual load:
 - 88 MG flow
 - 1.0751 E+16 cfu fecal coliform

CSO POINTS

HUMAN SOURCES

- Failed septic systems
 - Failure to soil surface throughout year
 - Failure rate based on age of home
- Straight pipes
 - Direct continuous input to stream
 - Based on proximity to stream and house age
- Biosolids applications
 - Records kept by Virginia Department of Health
 - Land-applied

Failed Septic System

Straight Pipe

PET SOURCES

- American Veterinary Medical Association estimates
 0.53 dogs and 0.60 cats per household
- Potentially updated through veterinarians, animal control, treasurer, and residents
- Population = population density * houses
- Land-applied

HUMAN AND PET SOURCES

Impairment	Human Pop. (#)	Housing Unit (#)	Dogs (#)	Cats (#)
lvy Creek	15,977	6,506	3,449	3,905
(VAC-H03R-03) Burton Creek (VAC-H03R)	13,374	4,576	2,427	2,747
Tomahawk Creek (VAC-H03R)	8,710	3,475	1,842	2,085
Blackwater Creek (VAC-H03R-01)	20,581	8,641	4,581	5,186
Fishing Creek (VAC-H03R-02)	9,350	3,737	1,981	2,243
Judith Creek (VAC-H03R)	3,633	1,385	735	832
James River (VAC-H03R-04)	25,600	9,773	5,183	5,866

LIVESTOCK SOURCES

- Population
 - Virginia Agricultural Statistics
 - Confined Animal Feeding Operation
 - Consultation with SWCD, VADCR, VCE, NRCS, and producers
 - Windshield survey
- Distribution of waste
 - Confined: waste collected and spread
 - Pastured: land-applied
 - Stream access: direct deposition
 - Imported sources
- Seasonal varying applications

LIVESTOCK SOURCES

Impairment	Beef* (#)	Dairy+ (#)	Horse (#)	Sheep (#)	Turkey (#)	Chicken (#)	Swine (#)
lvy Creek (VAC-H03R-03)	748	80	143	0	0	0	0
Burton Creek (VAC-H03R)	30	0	2	0	0	0	0
Tomahawk Creek (VAC-H03R)	95	0	13	0	0	0	0
Blackwater Creek (VAC-H03R-01)	0	0	0	0	0	0	0
Fishing Creek (VAC-H03R-02)	0	0	0	0	0	0	0
Judith Creek (VAC-H03R)	146	0	28	0	0	0	0
James River (VAC-H03R-04)	1,728	0	217	0	0	0	0

^{*} Cow/calf pairs; + Milking herd

WILDLIFE SOURCES

- Populations based on habitat and population densities provided by Virginia Department of Game and Inland Fisheries biologists
- Distribution of waste based on habitat
 - Land-applied
 - Direct deposition to stream
- Seasonal variations based on migration patterns and food sources

WILDLIFE SOURCES

Impairment	Deer (#)	Raccoon (#)	Muskrat (#)	Beaver (#)	Geese (#)	Duck (#)	Turkey (#)
Ivy Creek (VAC-H03R-03)	971	910	1,631	87	144	50	200
Burton Creek (VAC-H03R)	111	233	208	15	40	14	28
Tomahawk Creek (VAC-H03R)	123	195	228	15	31	11	25
Blackwater Creek (VAC-H03R-01)	101	199	67	12	37	13	26
Fishing Creek (VAC-H03R-02)	62	111	47	5	28	10	16
Judith Creek (VAC-H03R)	351	344	407	35	50	18	89
James River (VAC-H03R-04)	2,200	2,701	2,777	205	386	135	439

BACTERIAL SOURCE TRACKING

- Report provided by VADEQ
- Provides relative contribution of bacteria sources (i.e., human, pets, livestock, wildlife) to bacteria concentration in water samples
- Presence / Absence
 - 90% confidence that indicated proportions for each sample are within 15% of sampled population
 - Presence = proportional contribution > 15%

MODELING

- Link pollutant sources to stream water quality
- Approach includes use of JR-1
 - Upper limit of Middle James River watershed
 - No impairment no reductions
- Mathematically represent processes that are occurring in the watershed
- Processes
 - Hydrology water balance
 - Water quality pollutant fate and transport
- Accuracy Evaluation
 - Based on observed data
 - Flow: USGS gauge = model output
 - Bacteria: VADEQ station = model output

MODELING

- Hydrologic Simulation Program Fortran
 - Developed by USGS
 - Simulates point and non-point sources
 - Temporal variations in pollutant loadings
 - Seasonal patterns in climatic data

HYDROLOGIC MODELING

HYDROLOGIC MODELING COMPONENTS

- Land use
- Climatic data
- Topography
- Soils
- Stream channel characteristics
- Point source discharge / withdrawal
- Flow data

WATER QUALITY MODELING

WATER QUALITY MODELING COMPONENTS

- Sources
 - Fecal production
 - Fecal coliform densities
 - Fecal coliform distribution
- Delivery mechanisms
 - Direct
 - Land-applied
- Temporal variation

ALLOCATION

- Calculate existing loads for all sources
- Create load reduction scenarios
- Run model with scenarios
- Calculate water quality standard (WQS) violation rate
- Select scenario with 0% WQS violation rate

EXAMPLE ALLOCATION

Source	Existing Condition Load (cfu/yr)
Direct	
Straight Pipes	8.09E+13
Livestock	1.76E+12
Wildlife	5.93E+13
Total	1.58E+14
Land-based	
Residential	1.61E+14
Cropland	1.16E+13
Pasture	9.53E+15
Forest	2.95E+14
Total	9.99E+15

EXAMPLE ALLOCATION SCENARIOS

Scenario	Perce	ent Reduction	in Fecal C	Coliform Load	ling From I	Existing Condit	tions		on of <i>E. coli</i> Indard
Number	Straight Pipes	Livestock DD	Wildlife DD	Cropland	Pasture	Residential	Forest	Geometric Mean	Instantaneous
0	0	0	0	0	0	0	0	75	35
1	100	75	75	0	0	0	0	50	34
2	100	100	0	25	25	25	0	0	10
3	100	100	0	50	50	50	0	0	0

EXAMPLE ALLOCATION

Source	Existing Condition Load (cfu/yr)	TMDL Allocation Load (cfu/yr)	Scenario Reduction (%)	
Direct				
Straight Pipes	8.09E+13	0.00E+00	100	
Livestock	1.76E+12	0.00E+00	100	
Wildlife	5.93E+13	5.93E+13	0	
Total	1.58E+14	5.93 E +13		
Land-based				
Residential	1.61E+14	8.05E+13	50	
Cropland	1.16E+13	5.80E+12	50	
Pasture	9.53E+15	4.77E+15	50	
Forest	2.95E+14	2.95E+14	0	
Total	9.99E+15	5.15E+15		

EXAMPLE TMDL

WHAT'S NEXT?

- Additional modeling
 - Water quality model calibration and validation
- Allocation development
 - Scenario development, assessment of scenarios, selection of allocation
- Two Technical Advisory Committee Meetings
- Final public meeting Presentation of model results, allocation scenarios, and draft TMDL document

FOR INFORMATION, CONTACT:

- Kelly Hitchcock, Virginia's Region 2000 Local Government Council
 (434) 845 3491
 khitchcock@region2000.org
- Kelly Wills, Virginia Department of Environmental Quality South Central Regional Office
 (434) 582 6242
 kwills@deq.virginia.gov
- C.J. Mitchem, Engineering Concepts, Inc. (540) 473 1253
 <u>cmitchem@engineeringconcepts.com</u>